skip to main content


Search for: All records

Creators/Authors contains: "Gagnon, Karine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Marine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves. It is evident that marine foundation species have already been severely impacted by several climate change drivers, often through interactive effects with other human stressors, such as pollution, overfishing, and coastal development. Despite considerable variation in geographical, environmental, and ecological contexts, direct and indirect effects of gradual warming and subsequent heatwaves have emerged as the most pervasive drivers of observed impact and potent threat across all marine foundation species, but effects from sea level rise, ocean acidification, and increased storminess are expected to increase. Documented impacts include changes in the genetic structures, physiology, abundance, and distribution of the foundation species themselves and changes to their interactions with other species, with flow-on effects to associated communities, biodiversity, and ecosystem functioning. We discuss strategies to support marine foundation species into the Anthropocene, in order to increase their resilience and ensure the persistence of the ecosystem services they provide.

     

    more » « less
    Free, publicly-accessible full text available January 17, 2025
  2. Abstract Restoration is becoming a vital tool to counteract coastal ecosystem degradation. Modifying transplant designs of habitat-forming organisms from dispersed to clumped can amplify coastal restoration yields as it generates self-facilitation from emergent traits, i.e. traits not expressed by individuals or small clones, but that emerge in clumped individuals or large clones. Here, we advance restoration science by mimicking key emergent traits that locally suppress physical stress using biodegradable establishment structures. Experiments across (sub)tropical and temperate seagrass and salt marsh systems demonstrate greatly enhanced yields when individuals are transplanted within structures mimicking emergent traits that suppress waves or sediment mobility. Specifically, belowground mimics of dense root mats most facilitate seagrasses via sediment stabilization, while mimics of aboveground plant structures most facilitate marsh grasses by reducing stem movement. Mimicking key emergent traits may allow upscaling of restoration in many ecosystems that depend on self-facilitation for persistence, by constraining biological material requirements and implementation costs. 
    more » « less
  3. Abstract

    Understanding the ecological interactions that enhance the resilience of threatened ecosystems is essential in assuring their conservation and restoration. Top‐down trophic interactions can increase resilience to bottom‐up nutrient enrichment, however, as many seagrass ecosystems are threatened by both eutrophication and trophic modifications, understanding how these processes interact is important. Using a combination of approaches, we explored how bottom‐up and top‐down processes, acting individually or in conjunction, can affect eelgrass meadows and associated communities in the northern Baltic Sea. Field surveys along with fish diet and stable isotope analyses revealed that the eelgrass trophic network included two main top predatory fish species, each of which feeds on a separate group of invertebrate mesograzers (crustaceans or gastropods). Mesograzer abundance in the study area was high, and capable of mitigating the effects of increased algal biomass that resulted from experimental nutrient enrichment in the field. When crustacean mesograzers were experimentally excluded, gastropod mesograzers were able to compensate and limit the effects of nutrient enrichment on eelgrass biomass and growth. Our results suggest that top‐down processes (i.e., suppression of algae by different mesograzer groups) may ensure eelgrass resilience to nutrient enrichment in the northern Baltic Sea, and the existence of multiple trophic pathways can provide additional resilience in the face of trophic modifications. However, the future resilience of these meadows is likely threatened by additional local stressors and global environmental change. Understanding the trophic links and interactions that ensure resilience is essential for managing and conserving these important ecosystems and the services they provide.

     
    more » « less