- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Gagnon, Karine (3)
-
Boström, Christoffer (2)
-
Silliman, Brian R. (2)
-
Adame, Maria Fernanda (1)
-
Al-Haj, Alia N (1)
-
Alatalo, Juha M (1)
-
Angelini, Christine (1)
-
Barry, Savanna C (1)
-
Baum, Julia K. (1)
-
Benavides, Juan C (1)
-
Berges, John A (1)
-
Bernal, Susana (1)
-
Bishop, Melanie J. (1)
-
Bouma, Tjeerd J. (1)
-
Bowen, Jennifer (1)
-
Bruno, John F. (1)
-
Bulmer, Richard H (1)
-
Caliman, Adriano (1)
-
Camden, Megan (1)
-
Cardoso-Mohedano, José Gilberto (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Marine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves. It is evident that marine foundation species have already been severely impacted by several climate change drivers, often through interactive effects with other human stressors, such as pollution, overfishing, and coastal development. Despite considerable variation in geographical, environmental, and ecological contexts, direct and indirect effects of gradual warming and subsequent heatwaves have emerged as the most pervasive drivers of observed impact and potent threat across all marine foundation species, but effects from sea level rise, ocean acidification, and increased storminess are expected to increase. Documented impacts include changes in the genetic structures, physiology, abundance, and distribution of the foundation species themselves and changes to their interactions with other species, with flow-on effects to associated communities, biodiversity, and ecosystem functioning. We discuss strategies to support marine foundation species into the Anthropocene, in order to increase their resilience and ensure the persistence of the ecosystem services they provide.more » « less
-
Trevathan-Tackett, Stacey M; Kepfer-Rojas, Sebastian; Malerba, Martino; Macreadie, Peter I; Djukic, Ika; Zhao, Junbin; Young, Erica B; York, Paul H; Yeh, Shin-Cheng; Xiong, Yanmei; et al (, Environmental Science & Technology)Free, publicly-accessible full text available December 10, 2025
-
Temmink, Ralph J.; Christianen, Marjolijn J.; Fivash, Gregory S.; Angelini, Christine; Boström, Christoffer; Didderen, Karin; Engel, Sabine M.; Esteban, Nicole; Gaeckle, Jeffrey L.; Gagnon, Karine; et al (, Nature Communications)Abstract Restoration is becoming a vital tool to counteract coastal ecosystem degradation. Modifying transplant designs of habitat-forming organisms from dispersed to clumped can amplify coastal restoration yields as it generates self-facilitation from emergent traits, i.e. traits not expressed by individuals or small clones, but that emerge in clumped individuals or large clones. Here, we advance restoration science by mimicking key emergent traits that locally suppress physical stress using biodegradable establishment structures. Experiments across (sub)tropical and temperate seagrass and salt marsh systems demonstrate greatly enhanced yields when individuals are transplanted within structures mimicking emergent traits that suppress waves or sediment mobility. Specifically, belowground mimics of dense root mats most facilitate seagrasses via sediment stabilization, while mimics of aboveground plant structures most facilitate marsh grasses by reducing stem movement. Mimicking key emergent traits may allow upscaling of restoration in many ecosystems that depend on self-facilitation for persistence, by constraining biological material requirements and implementation costs.more » « less
An official website of the United States government
